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Abstract: The problem of estimating parameters from data is considered for a class of multi-objective models of
importance in computer vision. One previous approach for solving the problem is via the fundamental numerical
scheme (FNS). Here, a more stable version of FNS is developed, with better convergence properties than the
original version. The improvement in performance is achieved by reducing the original estimation problem to
a couple of problems of lower dimension. By way of example, the new algorithm is applied to the problem of
estimating the trifocal tensor relating three views of a scene. Experiments carried out with both synthetic and
real images reveal the new estimator to be more stable compared to the original FNS method, and
commensurate in accuracy with, but faster than, the gold standard maximum likelihood estimator.
1 Introduction
Fitting parametric models to data is a ubiquitous task in
computer vision. In a typical model, parameters describe a
relationship among image feature locations. The parameters
and image data pertaining to the model are combined in a
system of equations

f (x, u) ¼ 0 (1)

where x is a length-k vector describing an ideal data point, u
is a length-l vector of parameters, and f (x, u) is a length-m
vector of multi-objective constraints of the form

f (x, u) ¼ U (x)Tu (2)

where U (x) is an l � m data carrier matrix with entries
formed by polynomial functions in [xT, 1]T. Models with a
multi-component constraint vector of this type include ones
in which parameters describe such entities as a planar
homography [1], trifocal and quadrifocal tensors [2–4], a
camera projection matrix [5], and an aggregate of affine
subspaces [6, 7]. If observed data points x1, . . . , xn come
equipped with covariance matrices Lx1

, . . . , Lxn
quantifying

measurement errors in the data, then a statistically
meaningful estimate of u based on the compound set of the
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data points and their covariances can be obtained by
minimising the multi-objective approximated maximum
likelihood (AML) cost function

JAML(u ; x1, . . . , xn) ¼
Xn

i¼1

f (xi, u)T
S(xi , u)�1f (xi, u)

where S(xi, u) ¼ @x f (xi, u)Lxi
½@x f (xi, u)�T. Importantly,

when the length m of the f (xi , u) surpasses the common
codimension r of the submanifolds of the form
fx [ Rk

j f ðx; uÞ ¼ 0g with u representing ideal parameters
that might have generated the data, the inverses Sðxi; uÞ

�1 in
the above expression must be replaced, say, by the r
-truncated pseudo-inverses S(xi , u)þr to obtain a meaningful
cost function [8, 9]. The AML estimate of u, defined as the
minimiser of the function u 7! JAML(u; x1, . . . , xn) and
denoted û

u

AML, exhibits nearly optimal statistical behaviour
and – unlike the maximum likelihood estimate – is relatively
inexpensive to compute [10]. As a consequence of
u 7! JAML(u; x1, . . . , xn) being homogeneous of degree zero,
û

u

AML is determined only up to scale. Once û
u

AML has been
generated, additional constraints – if they apply – involving
the parameters alone can be accommodated via an adjustment
procedure. In what follows we shall confine our attention to
the estimation phase that precedes adjustment, concentrating
effectively on unconstrained minimisation of JAML (this is
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underlined by attaching the superscript u in the symbol for the
AML estimate).

Various methods are available for finding û
u

AML. One is the
fundamental numerical scheme (FNS) introduced in [11] for
single-objective models and extended in [10] to the case of
multi-objective models. Another is the heteroscedastic
errors-in-variables (HEIV) scheme initially proposed by
Leedan and Meer [12] for single-equation models and
further developed by Matei and Meer [5] to cover multi-
equation models. Both techniques estimate the parameters
of the model iteratively. To ensure convergence, the
methods often require a good initial parameter estimate,
but sometimes even an accurate seed leads to divergence if
the level of noise in the data is too high.

The main purpose of this paper is to present a reduced
form of FNS, where only a subset of the total parameter
vector is estimated iteratively and the remaining parameters
are recovered in a single step based on the result of the
earlier iterative process. The reduced algorithm in effect
replaces the original estimation problem with a couple of
problems of lower dimension. The algorithm is an
extension to the multi-objective setting of the reduced
single-objective FNS given in [13]. As is demonstrated in
the experimental section of the paper, the process of
dimension reduction leads to significant benefits.
Compared with the full form [10], the reduced form of the
algorithm requires a less accurate initial estimate and enjoys
better convergence properties. Although the paper is
primarily concerned with FNS, the optimality condition
which underlies the reduced form of this algorithm can
readily be exploited to advance a reduced form of HEIV.
In the experimental section, results for both the reduced
FNS and reduced HEIV are presented.

2 Variational equation
The minimiser û

u

AML satisfies the necessary optimality
condition

[@u JAML(u; x1, . . . , xn)]
u¼û

u
AML
¼ 0T (3)

with @u JAML the row vector of the partial derivatives of JAML

with respect to u. This is termed the variational equation.
With the aid of (2) reformulated as

f (x, u) ¼ (uT
� I m)vec(U T) (4)

where I m denotes the m� m identity matrix, and vec and �
denote the vectorisation and Kronecker product operators
[14], respectively, it can be shown that

[@u JAML(u; x1, . . . , xn)]T
¼ 2X u u
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where X u ¼Mu � N u is an l � l symmetric matrix with

Mu ¼
Xn

i¼1

U iS
�1
i U T

i (5a)

N u ¼
Xn

i¼1

(I l � hT
i )Bi(I l � hi) (5b)

U i ¼ U (xi)

Bi ¼ @xi
vec(U T

i )Lxi
[@xi

vec(U T
i )]T (5c)

Si ¼ (uT
� I m)Bi(u� I m) (5d)

hi ¼ S
�1
i U T

i u (5e)

The variational equation (3) can accordingly be rewritten as

X uu ¼ 0 (6)

where the evaluation at û
u

AML is dropped for clarity. In this
form, the variational equation can readily serve as a basis
for isolating û

u

AML, as will be expanded upon below.

3 Reduced variational equation
Assume that the carrier matrix U (x) can be written as

U (x) ¼
Z(x)

W

� �
(7)

where Z(x) is an (l � m)� m matrix that depends on x (a ‘pure
measurement’ matrix), and W is an m� m invertible matrix
that does not depend on x. Corresponding to this splitting of
U (x), the parameter vector u will be subdivided as

u ¼
m
a

� �
(8)

where m and a are vectors of length l � m and m, respectively.
The partitioning of U (x) and u reflects the fact that some
components of u, considered as indeterminates, appear in
each of the equations of (1) only with constant coefficients.
The vector a collects together those components of u that
appear in (1) with pure constant coefficients. For each
i ¼ 1, . . . , m, the non-zero entries of the ith column of W
represent the constant coefficients of the components of a in
the ith equation of (1). If, for instance, every equation of (1)
has exactly one parameter with a unity coefficient, then, after
re-ordering of the equations of (1) if necessary, it can be
assumed that W ¼ I m:

We shall now present a system of two equations that jointly
are equivalent to the variational equation (6). One of these
equations involves only m and can be solved separately, and
the other expresses a in terms of m. We begin by noting
219
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that, in view of (7)

vec(U (x)T) ¼ vec(Z(x)T)
vec(W T)

� �

so that

@xvec(U (x)T) ¼ @xvec(Z(x)T)
0m2�k

� �

Hence, for each i ¼ 1, . . . , n, the lm� lm matrix Bi can be
represented as

Bi ¼
B0

i 0(l�m)m�m2

0m2�(l�m)m 0m2�m2

� �
(9)

where B0
i is the (l � m)m� (l � m)m matrix given by

B0
i ¼ @xi

vec(ZT
i )Lxi

[@xi
vec(ZT

i )]T, Zi ¼ Z(xi)

Define an m� m matrix S
0
i by

S
0
i ¼ (mT

� I m)B0
i (m� I m) (10)

Clearly, S 0i is positive semi-definite and depends only on the
ith element of data, its covariance Lxi

, and the parameter
vector m. Assume henceforth that each S

0

i is positive
definite and hence invertible. The inverses S

0�1
i can now

be used as matricial weights to define a ‘centroid’ of the Zi

as follows:

~Z ¼
Xn

i¼1

ZiS
0�1
i

Xn

i¼1

S
0�1
i

 !�1

(11)

Here,
Pn

i¼1 S
0�1
i is invertible because a sum of positive

definite matrices is also positive definite. For each
i ¼ 1, . . . , n, let

Z0i ¼ Zi �
~Z (12)

be the ith pure measurement vector relative to ~Z. Letting

h0i ¼ S
0�1
i Z0Ti m (13)

define the following (l � m)� (l � m) matrices

M 0
m ¼

Xn

i¼1

Z0iS
0�1
i Z0Ti (14a)

N 0m ¼
Xn

i¼1

(I l�m � h0Ti )B0
i (I l�m � h0i) (14b)

X 0m ¼M 0
m � N 0m

A fundamental result that can now be established is that
u ¼ [mT, aT]T satisfies the variational equation (6) if and
he Institution of Engineering and Technology 2008
only if the following system of equations holds:

X 0mm ¼ 0 (15a)

a ¼ �( ~ZW �1)Tm (15b)

A proof can be found in Appendix 1. The first equation
constrains solely m and therefore can be solved separately.
Once m is determined, a is readily prescribed by the second
equation. Of the two constraints, the first plays a leading
role and will be termed the reduced variational equation.

With the reduced AML cost function defined by

J 0AML(m; x1, . . . , xn) ¼
Xn

i¼1

mTZ0iS
0�1
i Z0Ti m (16)

(15a) can be viewed as the variational equation for an
optimiser of J 0AML. Interestingly, the m-part of û

u

AML,
which satisfies (15a) as û

u

AML satisfies (6), turns out to be
the minimiser of J 0AML, denoted m̂u

AML, not just a critical
point of J 0AML. Moreover, both JAML and J 0AML attain a
common minimum value at û

u

AML and m̂u
AML, respectively

(see Appendix 2). One noteworthy consequence of this link
is that the reduced AML cost function can be minimised
by any algorithm and the result (a m-vector) can first be
fed into (15b) to produce a partial estimate (an a-vector)
and further combined with this partial estimate [as per (8)]
to produce the minimiser of the full AML cost function.

4 FNS: full and reduced forms
Avectoru satisfies (6) if and only if it is a solution of the ordinary
eigenvalue problem X uj ¼ lj corresponding to the eigenvalue
l ¼ 0. This suggests an iterative method for solving (6)
whereby if uk�1 is a current approximate solution, then an
updated solution uk is a vector chosen from that eigenspace of
X uk�1

, which most closely approximates the null space of X u;
this eigenspace is, of course, the one corresponding to the
eigenvalue closest to zero in absolute value. The process can
be seeded with the normalised algebraic least squares (NALS)
estimate, ûNALS. This estimate results from applying the
algebraic least-squares (ALS) method to Hartley-normalised
data [15]. ALS is a simple technique that computes
the unconstrained minimiser of the cost function
JALS(u) ¼ kuk�2

S
n
i¼1u

TU iU
T
i u, with kuk ¼ (Sl

j¼1u
2
j )1=2, by

performing singular-value decomposition on [U 1, . . . , U n]T.
The overall procedure constitutes the FNS [10, 11] and is
summarised in Algorithm 1.

Algorithm 1: Steps of the FNS

1. Set u0 ¼ ûNALS.

2. Assuming uk�1 is known, compute the matrix X uk�1
.

3. Compute a normalised eigenvector of X uk�1
corresponding

to the eigenvalue closest to zero (in absolute value) and take
this eigenvector for uk.
IET Comput. Vis., 2008, Vol. 2, No. 4, pp. 218–227
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4. If uk is sufficiently close to uk�1, then terminate the
procedure; otherwise increment k and return to Step 2.

A modification of this technique based on the reduced
variational system (15a) and (15b) is the reduced FNS
(RFNS). Its steps are given in Algorithm 2.

Algorithm 2: Steps of the RFNS

1. Set m0 ¼ m̂NALS.

2. Assuming mk�1 is known, compute the matrix X 0mk�1
.

3. Compute a normalised eigenvector of X 0mk�1
corresponding

to the eigenvalue closest to zero (in absolute value) and take
this eigenvector for mk.

4. If mk is sufficiently close to mk�1, then terminate the
procedure; otherwise increment k and return to Step 2.

5. Compute a as per (15b) using the limiting value mk and
the corresponding value ~Z(mk) from the previous step.

In the case that the matrices S
�1
i are replaced by the

matrices (Si)
þ
r in the expression for JAML, a similar change

also affects the matrices X uk
of FNS. Moreover, as Si ¼ S

0
i

for i ¼ 1, . . . , n (see Appendix 1), the (S 0i )
þ
r supersede the

S
0�1
i in the expression for J 0AML and in the X 0mk

of RFNS.
The limiting estimates produced by the modified FNS and
the modified iterative part of RFNS are approximate
solutions of the variational and reduced variational equations
for the modified JAML and J 0AML, respectively.

Finally, we remark that a vector u satisfying (6) can
alternatively be viewed as a solution of the generalised
eigenvalue problem Muj ¼ lN uj corresponding to the
eigenvalue l ¼ 1. This observation provides a starting point
for the development of the HEIV scheme in both full and
reduced versions [13]. Each version solves successively
generalised eigenvalue problems analogous to the ordinary
eigenvalue problems solved by a corresponding version of FNS.

5 Experimental evaluation
We now present the results of comparative tests carried out to
evaluate the performance of both the RFNS and reduced
RHEIV. The application considered is trifocal tensor
estimation from point correspondences. The following six
algorithms were used to compute tensors from both
synthetic and real image data

† NALS ¼ normalised algebraic least squares

† HEIV ¼ heteroscedastic errors-in-variables scheme

† RHEIV ¼ reduced HEIV scheme

† FNS ¼ fundamental numerical scheme
Comput. Vis., 2008, Vol. 2, No. 4, pp. 218–227
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† RFNS ¼ reduced FNS

† GS ¼ gold standard

GS is an advanced method [3] for minimising the
maximum likelihood cost function JML, the expression for
which is given in (17) below. For fair comparison, FNS,
RFNS, RHEIV and GS are seeded with the generalised
total least-squares tensor estimate [12, 16] in order to
match HEIV given in [16]. A post-correction was applied
to the final tensors obtained by FNS, RFNS and RHEIV
to enforce internal constraints [16]. In the following, the
symbol ‘þ ’ is appended to the acronym of a given method
to indicate that a correction process was operated upon the
output of the method. HEIV estimates were obtained by
using a binary application [17] supplied by Matei and Meer
[5]. These estimates satisfy the internal constraints, as the
application generating it uses a variant of the HEIV
algorithm that dynamically enforces the constraints
throughout the iterative process.

5.1 Trifocal tensor from point matches

A trifocal tensor of three views is an analogue of a
fundamental matrix of two views. It encapsulates all the
geometric relations between three views that are
independent of scene structure, but is more useful than the
fundamental matrix as it captures constraints not only on
point correspondences but also on line and combined
point-and-line correspondences across the images.

Suppose that three camera matrices are chosen as
P ¼ [I 3, 0], P0 ¼ ½A; e0� ¼ ½a

j
i �; and P00 ¼ ½B; e00� ¼ ½bk

i �;
where A and B are 3� 3 matrices describing the infinite
homographies from the first to the second and third images,
respectively, and e0 and e00 are the epipoles in the latter two
views. The trifocal tensor is the valence-3 tensor given by

J
jk
i ¼ a

j
i bk

4 � a
j

4 bk
i , i, j, k ¼ 1, 2, 3

Let m ¼ [m1, m2, m3]T, m0 ¼ [m01, m02, 1]T and m00 ¼
[m001, m002, 1]T be the images of a point M in 3D space,
taken from the cameras with corresponding superscripts.
The points are related through the trifocal tensor by the four
trilinear constraints [4]

X3

i¼1

(mi
J

11
i � mim01J 31

i þ mim01m001J 33
i � mim001J 13

i ) ¼ 0

X3

i¼1

(mi
J

12
i � mim01J 32

i þ mim01m002J 33
i � mim002J 13

i ) ¼ 0

X3

i¼1

(mi
J

21
i � mim02J 31

i þ mim02m001J 33
i � mim001J 23

i ) ¼ 0

X3

i¼1

(mi
J

22
i � mim02J 32

i þ mim02m002J 33
i � mim002J 23

i ) ¼ 0
221
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Letting m3
¼ 1, this system can be brought into the form

given in (2) by first concatenating the inhomogeneous
coordinates of m, m0, and m00 to obtain a single item of data
x ¼ [m1, m2, m01, m02, m001, m002], next rearranging the
tensor entries into a length-27 vector u, and then setting
f (x,u) ¼ [ f1(x, u), . . . , f4(x, u)]T, where f1, . . . , f4 are the
corresponding expressions on the left-hand side of the above
system. Furthermore, U (x) and u can be partitioned as in
(7) and (8) with W ¼ I 4 and a ¼ [J 11

3 , J 12
3 , J 21

3 , J 22
3 ]T,

respectively. Given a data set {xi}
n
i¼1, the covariance of each

datum xi is assumed to be the default 6� 6 identity matrix
corresponding to isotropic homogeneous noise in image
point measurement. Lastly, since the submanifolds of the
form {x [ R6

j f (x, u) ¼ 0} with u representing a genuine
trifocal tensor, have codimension 3 [18], the matrices (Si)

þ
3

and (S 0i )
þ
3 are used instead of the matrices S�1

i and S
0�1
i in

the expressions for JAML and J 0AML, respectively, and in
related corresponding entities.

5.2 Synthetic image tests

First, the performance of the estimators was evaluated in a series
of 200 tests on synthetic input. A set of 3D points was created in
a cuboid of dimensions 3 m � 1.5 m � 3 m with five points
equally spaced along each direction. The images were
3000 � 2000 pixels in size, with square pixels of side 9 mm.
The 125 world points were captured by three perspective
cameras with focal length of 3600 pixels, placed at
~C1 ¼ [�5, 3, 1:5]T, ~C2 ¼ [0, 0, 0]T, and ~C3 ¼ [3, 3, 1:5]T

to provide ‘true’ matches. The centre of the cuboid was
located 5 m away from the world origin at ~C2. Fig. 1 depicts
the 3D scene with the camera positions and orientations.
Each true image point was then perturbed by homogeneous
Gaussian noise with zero mean and standard deviation of
s ¼ 2 pixels. The resulting noise-contaminated triples of
matching points were used as input to the six algorithms.

Figure 1 A synthetic 3D scene made of equally spaced
points inside a cuboid and three cameras viewing the scene
The Institution of Engineering and Technology 2008
Table 1 shows the averages over the total number of trials
for the unconstrained schemes. To calculate J 0AML residuals
for the non-reduced methods, the m-component of each
final u-vector was retrieved and plugged into the J 0AML

expression. It is clearly seen that the estimates produced by
the iterative schemes give all similar values of JAML and
J 0AML residuals. This, in particular, provides an empirical
confirmation of the identity JAML(u) ¼ J 0AML(m) (see
Appendix 2). RFNS and RHEIV achieved a better
convergence rate over FNS – the last scheme was almost
three times slower and required about three times as many
iterations compared with the two other schemes. It can
also be seen that the iterative methods are tangibly more
accurate than the basic non-iterative NALS procedure.
This suggests potential utility of the iterative methods, as
only accurate unconstrained estimates can be upgraded to
accurate constrained estimates suitable for practical
applications.

Table 2 shows the averages for the constrained schemes
with the addition of two other tests. It is immediately
apparent that the JAML and J 0AML values for the HEIV,
RHEIVþ , FNSþ , and RFNSþ estimates are all very
similar, if slightly higher than those for the estimates
generated by the respective unconstrained schemes.
Moreover, in terms of JAML and J 0AML values, the estimates
produced by all four constrained methods are of comparable
accuracy to the GS estimates.

The third and fourth columns give the results of perhaps more
critical tests coming from using the maximum likelihood
function, JML. For a trifocal tensor estimate û obtained by a
method other than GS, JML(û) was calculated by minimising
the reprojection error

Xn

i¼1

d (mi, m̂i)
2
þ d (m0i, m̂0i)

2
þ d (m00i , m̂00i )2

� �
(17)

over all points m̂i ¼ N (PM i), m̂0i ¼ N ( P̂
0
M i) and

m̂00i ¼ N ( P̂
00
M i), where P̂

0
and P̂

00
are retrieved from û [3]

and kept fixed. Note the difference with the GS algorithm, in
which – for finding û that minimises the reprojection error –
the m̂i , m̂0i , m̂00i , and P̂

0
and P̂

00
are allowed to vary

simultaneously. Here, N (m) ¼ m=m3 is a normalisation
procedure whose application ensures that the third coordinate
of a given planar point is unity, and d (m, n) denotes the

Table 1 Average JAML and J0AML residuals, number of
iterations, and timing for the unconstrained schemes

Methods JAML J0AML Iter. Time, s

NALS 1450.2 1450.1 1 0.05

FNS 1432.1 1432.1 9.4 2.50

RFNS 1432.1 1432.1 2.6 0.90

RHEIV 1432.1 1432.1 2.6 0.90
IET Comput. Vis., 2008, Vol. 2, No. 4, pp. 218–227
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Table 2 Average JAML, J0AML, JML residuals, RMS error, number
of iterations and timing for the constrained schemes

Methods JAML J0AML JML RMS Iter. Time, s

HEIV 1462.6 1462.6 1463.0 1.40 – 0.01

RHEIVþ 1462.6 1462.6 1462.6 1.40 2.6 1.49

FNSþ 1462.6 1462.6 1462.6 1.40 9.4 2.69

RFNSþ 1462.6 1462.6 1462.6 1.40 2.6 1.49

GS 1462.9 1462.8 1468.6 1.40 13.2 20.72
Euclidean distance between the planar points m and n that have
been normalised in the above sense. The M i are initially
obtained by triangulating from the mi, m0i and m00i and are
then recomputed in each optimisation step of an iterative
4, pp. 218–227
scheme (typically, and in our case, the Levenberg–Marquardt
algorithm) that minimises the reprojection error.
The root-mean-square (RMS) reprojection error is taken
to be ( JML(û)/(6n))1/2, with 6 representing the number of
Figure 2 Three images and a 3D model built from them by using a trifocal tensor estimate

a Original: Each image is 600 � 800 pixels in size with 44 putative points identified
b Reconstruction : Two views of the 3D model obtained from RFNSþ trifocal tensor estimate
223
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elementary degrees of freedom expressible in units of length:
three images � two image dimensions. Upon inspection, it is
found that the estimates from the post-corrected schemes
produce very competitive JML and RMS error values in
comparison to GS estimates, and that the post-corrected
schemes achieve the same accuracy as HEIV, which matches
expectations.

The last two columns of Table 2 provide insight as to the
computing efficiency of the schemes. Here, the iteration
number field for HEIV is left empty because the binary
application used to generate HEIV estimates does not
allow for determining the number of iterations involved. It
is clear that FNSþ , RFNSþ , and RHEIVþ operate very
quickly compared with GS. Note that the search space for
GS has dimension 125� 3þ 27 ¼ 402, whereas the search
space for FNSþ and that for RFNSþ and RHEIVþ have
dimensions 27 and 23, respectively.

Finally, it should be pointed out that in another series of
200 tests, FNS failed to converge 27 times, whereas RFNS
succeeded every time. This indicates that the eigenvalue
problem solved by RFNS is better conditioned than the
one solved by FNS.

5.3 Real image test

Three images were acquired by a hand-held camera and
registered using a trifocal tensor computed with RFNSþ to
build a 3D model (Fig. 2). Owing to a small baseline distance
between any two camera positions, the trifocal plane here is
not firmly defined and has potential to trigger numerical
instabilities. To ensure convergence, a modification of FNS in
Step 3 became necessary. With vi,k the normalised eigenvector
corresponding to the ith smallest eigenvalue of X uk�1

, the
update uk was defined as the result of normalisingP3

i¼1(uT
k�1vi,k)vi,k. A similar adjustment was made for RFNS.

Tables 3 and 4 show the results of applying the previous six
algorithms to the image data points. As before, it can be seen
that the unconstrained algorithms produce estimates with
very similar JAML and J 0AML residuals. FNS and RFNS
converged in the same number of iterations and executed in
about the same time. RHEIV lagged fractionally behind.

Tables 4 gives the results for the constrained schemes. All
methods performed well and were essentially inseparable

Table 3 JAML and J0AML residuals, number of iterations and
timing for the unconstrained schemes

Methods JAML J0AML Iter. Time, s

NALS 33.2 33.2 1 0.06

FNS 28.5 28.3 6 0.62

RFNS 28.6 28.6 6 0.64

RHEIV 28.7 28.6 8 0.72
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from GS. Again, because of a much larger search space,
GS ran markedly slower than the other methods, with
RFNSþ being the fastest.

6 Conclusion
A novel parameter estimation method, RFNS, was proposed
for a class of problems in which the relationship between
parameters and image data is expressed as a system of
equations. The original FNS method operates over the
entire parameter space, whereas the newly proposed
method operates on a subspace of lower dimension and
recuperates the missing degrees of freedom in a single final
step. The performance of RFNS was demonstrated on the
problem of trifocal tensor estimation. It was shown that
RFNS is more stable and faster to converge than FNS, the
former scheme being the fastest of all the methods tested.
It was also shown that when compared with GS, RFNS
gives almost identical results in terms of the JAML and
J 0AML residuals, GS’s reprojection error, and RMS error,
indicating that RFNS produces a solution of high accuracy.
Finally, it was noted that a companion scheme, RHEIV,
can be evolved in a similar fashion to that of RFNS and it
was found that the performance of RHEIV matches that of
RFNS.
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[14] LÜTKEPOL H.: ‘Handbook of matrices’ (John Wiley & Sons,
Chichester, 1996)

[15] HARTLEY R.: ‘Lines and points in three views and the trifocal
tensor’, Int. J. Comput. Vision, 1997, 22, (2), pp. 125–140

[16] MATEI B., MEER P.: ‘A versatile method for trifocal tensor
estimation’. Proc. Eighth Int. Conf. Computer Vision, 2001,
vol. 2, pp. 578–585

[17] http://www.caip.rutgers.edu/riul/research/code.html
Comput. Vis., 2008, Vol. 2, No. 4, pp. 218–227
10.1049/iet-cvi:20080027
[18] TORR P.H.S., ZISSERMAN A.: ‘Robust parametrization and
computation of the trifocal tensor’, Image and Vision
Comput., 1997, 15, pp. 591–605

9 Appendixes
9.1 Appendix 1

Here, we show the equivalence of (6) and the system
comprising (15a) and (15b). Recalling definitions (5d) and
(10), first note that, by (8) and (9)

Si ¼ S
0

i (18)

for each i ¼ 1, . . . , n. Consequently, definition (5a) can be
rephrased as

Mu ¼
Xn

i¼1

U iS
0�1
i U T

i (19)

Again by (9), for each i ¼ 1, . . . , n

(I l �hT
i )Bi(I l �hi)¼

I l�m�hT
i 0(l�m)�m2

0m�m(l�m) I m�hT
i

" #

�
B0

i 0m(l�m)�m2

0m2�m(l�m) 0m2�m2

" #

�
I l�m�hi 0m(l�m)�m

0m2�(l�m) I m�hi

" #

¼
(I l�m�hT

i )B0
i (I l�m�hi) 0(l�m)�m

0m�(l�m) 0m�m

" #

It follows that N u given in (5b) takes the form

N u¼
N 0

u 0(l�m)�m

0m�(l�m) 0m�m

� �
(20)

where

N 0
u¼

Xn

i¼1

(I l�m�hT
i )B0

i (I l�m�hi) (21)

Now, if u satisfies (6), then, in view of (7), (19) and (20), the
equivalent condition Muu¼N uu on u can be written as

Xn

i¼1

Zi

W

� �
S
0�1
i [ZT

i , W T]
m
a

� �
¼

N 0
u 0

0 0

� �
m
a

� �
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which in turn expands into the system

Xn

i¼1

ZiS
0�1
i (W TaþZT

i m)¼N 0
um (22a)

Xn

i¼1

WS
0�1
i (W TaþZT

i m)¼ 0 (22b)

By our standing assumption that W is invertible, the second
of the above equations reduces to

Xn

i¼1

S
0�1
i (W TaþZT

i m)¼ 0 (23)

Now, since the S
0

i and hence the S
0�1
i are symmetric, it

immediately follows from (11) that ~Z
T
¼ (
Pn

i¼1 S
0�1
i )�1Pn

i¼1 S
0�1
i ZT

i . Hence, (23) can be rewritten as

Xn

i¼1

S
0�1
i

 !
(W Taþ ~Z

T
m)¼ 0

and further as

W Taþ ~Z
T
m¼ 0 (24)

As W is invertible, this immediately implies (15b).

To show that (15a) also holds, note that, by (7) and (8), for
each i ¼ 1, . . . , n

U T
i u ¼ W Taþ ZT

i m

and by (12) and (24)

W Taþ ZT
i m ¼ W Taþ (Z0Ti þ

~Z
T

)m ¼ Z0Ti m

whence

U T
i u ¼ Z0Ti m (25)

Recalling definitions (5e) and (13), we see that (25)
combined with (18) implies that hi ¼ h0i . Comparison of
(14b) and (21) now yields N 0

u ¼ N 0m. Thus, in particular

N 0
um ¼ N 0mm (26)

Furthermore, in view of (12)

Xn

i¼1

ZiS
0�1
i (W Taþ ZT

i m) ¼
Xn

i¼1

(Z0i þ
~Z)S 0�1

i (W Ta

þ ZT
i m)
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By (23)

Xn

i¼1

~Z S
0�1
i (W TaþZT

i m) ¼ ~Z
Xn

i¼1

S
0�1
i (W TaþZT

i m) ¼ 0

and by (12), (14a) and (24)

Xn

i¼1

Z0iS
0�1
i (W TaþZT

i m) ¼
Xn

i¼1

Z0iS
0�1
i

� (W Taþ ~Z
T
mþZ0Ti m) ¼

Xn

i¼1

Z0iS
0�1
i Z0Ti m ¼M 0

mm

Putting the last three expressions together, we see that the
left-hand side of (22a) is equal to M 0

mm. This jointly with
(26) yields (15a), as required.

Working backwards, one can easily infer that if m and a
satisfy (15a) and (15b) respectively, then u ¼ [mT, aT]T

satisfies the original expression (6).

9.2 Appendix 2

Let m
û

u
AML

and a
û

u
AML

be the parts of û
u

AML as per (8). Here,

we show that mû u
AML

can be identified with m̂u
AML, and,

moreover, that both JAML and J 0AML attain a common
minimum value at û u

AML and m̂u
AML, respectively.

First note that, in view of (18), the expression for JAML

given by

JAML(u) ¼
Xn

i¼1

uTU iS
�1
i U T

i u

can be restated as

JAML(u) ¼
Xn

i¼1

uTU iS
0�1
i U T

i u (27)

Next, given an arbitrary m, let a be such that (15b) holds, and
let u ¼ [mT, aT]T. Then, as the calculation in Appendix 1
immediately preceding (25) reveals, (25) holds, and this
equality combined with (16) and (27) yields

JAML(u) ¼ J 0AML(m) (28)

Since JAML(ûu
AML) � JAML(u), we see that JAML(ûu

AML) �
J 0AML(m), and since m can, in particular, be taken to be
m̂u

AML, we have

JAML(ûu
AML) � J 0AML(m̂u

AML) (29)

On the other hand, as (15b) holds for m
û

u
AML

and aûu
AML

[recall that ûu
AML satisfies (6), which, as shown earlier in

Appendix 1, implies (15b)], (28) can be explicitly written
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in this case as

JAML(ûu
AML) ¼ J 0AMLðmûu

AML
Þ (30)

But J 0AML(m̂u
AML) � J 0AML(m) for all m, and so, in particular

J 0AML(m̂u
AML) � J 0AML(mûu

AML
) (31)
Comput. Vis., 2008, Vol. 2, No. 4, pp. 218–227
10.1049/iet-cvi:20080027
Putting (29), (30) and (31) together, we obtain

JAML(m̂u
AML) ¼ J 0AML(mûu

AML
) ¼ JAML(ûu

AML)

Hence, it first follows that m̂u
AML is equal to m

û
u
AML

(up to scale), as, generically, the minimiser of J 0AML is
uniquely defined (up to scale). Furthermore, we see that
JAML and J 0AML attain a common minimum value at ûu

AML

and m̂u
AML, respectively. Our claims have thus been

established.
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